In these exercises, we deal with continued fractions. These are remarkable ways of writing rational and irrational numbers as a sum of an integer and another number, which is itself recursively written as a continued fraction. For instance, $\sqrt{19}$ can be represented as

with the continued fractional part being a continued fraction of period 6. Here’s an implementation of the continued fraction computation function in Scheme:


(define (cont-frac n d k)
(define (iter k result)
(if (< k 0)
result
(let ((nk (n k))
(dk (d k)))
(iter (- k 1)
(/ nk (+ dk result))))))
(iter (- k 1) 0.0))


And here’s how we compute $\sqrt{19}$:


(define (sqrt-19 num-terms)
(+ 4
(cont-frac (lambda (i) 1)
(lambda (i)
(let ((r (remainder i 6)))
(cond ((or (= r 0)
(= r 4)) 2)
((or (= r 1)
(= r 3)) 1)
((= r 2) 3)
((= r 5) 8))))
num-terms)))

(sqrt-19 1000)
;; 4.358898943540673


The base of the natural logarithm, $\exp(1)$, can be written as:

Here’s the code:


(define (e num-terms)
(+ 2
(cont-frac (lambda (i) 1)
(lambda (i)
(cond ((= i 0) 1)
((= 0 (remainder (- i 1) 3))
(* 2 (+ 1 (/ (- i 1) 3))))
(else 1)))
num-terms)))

(e 1000)
;; 2.7182818284590455
(exp 1)
;; 2.718281828459045



Lastly, the function $\tan{x}$, when $x$ is in radians, can be written as:

Here’s the code:


(define (tan-cf x k)
(let ((x-squared (* x x)))
(cont-frac (lambda (i)
(if (= i 0)
x
(- x-squared)))
(lambda (i) (+ (* 2 i) 1))
k)))

(tan-cf (/ (asin 1) 2) 1000) ;; tan(pi/4)
;; 1.0